エポキシ樹脂の発泡成形に与えるレオロジーの影響

The Effect of Rheology of Epoxy on Foaming

(山形大・工) ○(学)滝口 修、(学)小浪 太郎、(正)杉本 昌隆、

(正)谷口 貴志、(正)小山 清人

The effect of rheology of epoxy on foaming was investigated. Dynamic time sweep test of epoxy/curing agent (100/1, w/w) was conducted at $90 \sim 110^{\circ}$ C. The viscosities as a function of time showed extremely rapid increase from the order of $10^{2} \sim 10^{3}$ to 10^{6} Pa·s at a certain time, followed by slow increase of the viscosities. Dynamic frequency sweep test of precured epoxy with curing agent was conducted at 90° C. The critical gelation time was obtained by using rheological criterion proposed by Winter and Chambon. We found that the slopes of G'(ω) and G''(ω) decreased with increasing precuring time. Correspondingly, tan δ showed a change from negative to positive slope at a critical time. By using the results, the critical gelation time was determined as t=895~935sec. Samples of epoxy/curing agent/blowing agent (100/1/0.5) were precured for 960, 1200, and 1620sec. And then precured samples were foamed at 230°C for 5min to decompose chemical blowing agent. There are roughly two sizes of bubbles when precured for 960sec before foaming: large bubbles (>100 \mu m) and small ones ($\approx 30 \mu m$). On the other hand, foams precured for 1200 and 1620sec before foaming, large bubbles disappear and the average diameter of the bubble becomes small while the prosity is low.

Key words: epoxy; foam; gelation point; rheology; chemical blowing agent

1.緒言

エポキシ樹脂は接着性、耐薬品性、耐熱性、電 気特性等に優れているため、注型品、積層板、半 導体の封止剤等、電気・電子分野で幅広く使用さ れている。しかし、近年では情報の処理速度の高 速化が進み、エポキシ樹脂の現状の電気特性では 対応しきれなくなってきている。いくつかの電気 特性の中で、誘電率は多くの電気特性に関わって おり、誘電率を下げることによってこれらの要求 を満足させることが出来ると考えられている。誘 電率を下げる方法として検討されているのが、エ ポキシ樹脂の発泡体化である。空気の比誘電率は 1.0 と非常に低く、エポキシ樹脂中に微細な気泡 を多く導入することが出来れば、低誘電率化が達 成できる。しかし、エポキシ樹脂の発泡成形性に 関する報告は非常に少なく¹⁾、レオロジーと発泡 成形の関係についての報告はない。そこで、本研 究ではエポキシ樹脂のレオロジーと発泡成形性 の関係を調査することを目的とした。

Osamu TAKIGUCHI*, Taro KONAMI, Masataka SUGIMOTO, Takashi TANIGUCHI and Kiyohito KOYAMA

Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Japan Tel:0238-26-3058, Fax:0238-26-3411 Email: takiguti@ckpss.yz.yamagata-u.ac.jp 本研究では、エポキシ樹脂の発泡体を2つのプロセスを経て作製した。1つ目は、発泡剤が分解しない低温でエポキシ樹脂を予備硬化させた。そして、2つ目は発泡剤が分解する高温で、エポキシ樹脂を発泡・硬化させた。そして、予備硬化の際のレオロジーと高温で発泡させた時の発泡成形性との関係を調査した²⁾。

2.実験

試料について、エポキシ樹脂は EPIKOTE®834 (ジャパンエポキシレジン株式会社製、分子量約 470、比重 1.18)を用いた。硬化剤は2エチル4メ チルイミダゾール(四国化成工業株式会社製)、発 泡剤はビニホール AC#3C-K2(永和化成工業株式 会社製、メジアン径 5µm、熱分解温度 208℃)を 用いた。

エポキシ樹脂のレオロジー測定ではエポキシ 樹脂/硬化剤を 100/1 の重量比で混合した試料を 用いた。時間依存性測定は測定温度 90~110℃、 角周波数 1.0rad/s、ひずみ 1%、窒素雰囲気下で行 った。周波数依存性測定は測定温度 90℃、角周 波数 5~100rad/s、窒素雰囲気下で試料を 875、895、 935 秒間予備硬化させた後それぞれ測定した。

エポキシ樹脂の発泡成形ではエポキシ樹脂/硬 化剤/発泡剤を100/1/0.5の重量比で混合した試料 を用いた。試料を90℃で960、1200、1620秒予 備硬化させ、230℃で5分間発泡・硬化させた。 3.結果および考察

図 1 にエポキシ樹脂の時間依存性の測定結果 を示す。測定開始から一定の時間後にそれぞれ急 激な粘度上昇が始まり、その後粘度上昇が緩やか になっている。また、測定温度が高いほど粘度上 昇の開始時間および硬化時間が早くなった。この ことから、今後の測定には硬化時間が一番遅い 90℃で行うことにした。

図 2 にエポキシ樹脂の G'、G"、tan δの周波数 依存性の測定結果を示す。臨界ゲル化点では以下 の式が成り立つことが報告されている^{3.4)}。

 $G'(\omega) = G_c'\omega^n, G''(\omega) = G_c''\omega^n$ $(0 < \omega < \infty)$ (1) $\tan \delta = \tan \delta (n\pi/2)$ (0<*n*<1) (2)ここで、nは指数、 G_c 、 G_c "は定数である。図 2(a) の 875 秒と 895 秒の G'について、低周波数側に なるほど低下することが見られた。そして、G' の傾きは予備硬化時間が長くなるほど小さくな った。935 秒では G'と G"の傾きが水平に近づい ている。G'のこの変化は粘弾性液体から粘弾性 固体への変化を示している。さらに、図 2(b)から、 tanδの傾きについて、875 秒と895 秒は負の傾き であるのに対して、935秒は正の傾きを示してい る。この傾向は他の論文でも見られ⁵、正と負の 傾きの間にゲル化点が存在することが報告され ている。よって、エポキシ樹脂は90℃で895~935 秒の間でゲル化することが分かった。

図3にエポキシ樹脂発泡体の断面のSEM写真 を示す。図3(a)では気泡径が30µm以下の小さい 気泡の他に100µm以上の大きい気泡が多く見ら れ、気泡が不均一だった。図3(b)になると気泡径 が100µm以上の大きな気泡がなくなった。さら に、気泡径小さくなり、均一になった。しかし、 空隙率が低くなった。そして、図3(c)になると気 泡径は発泡剤の直径と同じになり、空隙率はさら に低くなった。

4.結言

発泡剤が分解しない低温でのレオロジー測定 を行い、ゲル化点を求めた。そして、ゲル化点以 上の時間で試料を予備硬化させることで、エポキ シ樹脂発泡体の発泡構造を作製した。予備硬化時 間がゲル化点付近の場合には、気泡が不均一にな ってしまうことが分かった。

Fig.1 η^* as a function of time, cured at temperature for 90, 100, and 110°C.

Fig.2 (a) (\rightarrow) G' and (\rightarrow) G"; (b)tan δ as a function of angular frequency with different precuring times at 90°C.

Fig.3 SEM micrographs of fracture cross sections of the foamed samples at 230°C for 300s after precuring for (a)960, (b)1200, (c)1620s at 90°C.

参考文献

- P. M. Stefani, A. Tejeira Barchi, J. Sabugal, A. Vazquez, J. Appl. Polym. Sci., 90, 2992-2996 (2003)
- O. Takiguchi, D. Ishikawa, M. Sugimoto, T. Taniguchi, and K. Koyama, *AIP Conference Proceedings*, 982, 501 (2007)
- 3. H. H. Winter, F. Chambon: J. Rheol., 30, 367 (1986)
- 4. F. Chambon. H. H. Winter: J. Rheol., **31**, 683 (1987)
- 5. L. Matejka: Polym. Bull., **26**, 109 (1991)