伸長粘度曲線とドローレゾナンス

(山形大・工) 小野洋介、杉本昌隆、谷口貴志、小山清人(京工繊大院) 石原英昭

ドローレゾナンスとは?

ドローレゾナンスとは?

一軸伸長粘度

目的

<u>伸長粘度曲線における線形部分の挙動と</u>

<u>ドローレゾナンスとの相関を得る</u>

試料

サンプル名	M _w [g/mol]	M _w /M _n
PP-A	220,000	2.9
PP-B	225,000	4.5
PP-C	270,000	7.3
PP-D	167,000	4.6
PP-E	361,000	4.6

実験方法

実験方法

~ ドローレゾナンスの発現~ エアギャップ エアギャップにおいて試料が 溶融状態にあれば発現する 7 水冷却式紡糸法 エアギャップを小さくすることで 等温状態にすることができる

実験方法

~紡糸実験~

キャピログラフ1D (東洋精機)

~ 直径分布測定 ~

Air Gap=10mm T=190°C

L/D=10/2

	V _w [m/min]	V ₀ [m/min]	Ф [-]		V _w [m/min]	V ₀ [m/min]	Ф [-]		V _w [m/min]	V ₀ [m/min]	Ф [-]
PP-A	1.2	0.062	20	PP-C	0.8	0.039	20	PP-E	0.9	0.045	20
	1.6	0.062	25		1.0	0.039	25		1.1	0.045	25
	2.2	0.062	35		1.4	0.039	35		1.6	0.045	35
	2.8	0.062	45		1.8	0.039	45		2.0	0.045	45
	3.4	0.062	55		2.1	0.039	55		2.5	0.045	55
	4.0	0.062	65		2.5	0.039	65		2.9	0.045	65
PP-B	1.0	0.053	20		3.3	0.039	85				
	1.3	0.053	25	PP-D	1.0	0.049	20				
	1.9	0.053	35		1.2	0.049	25				
	2.4	0.053	45		1.7	0.049	35				
	2.9	0.053	55		2.2	0.049	45				
	3.4	0.053	65		2.7	0.049	55				
					3.2	0.049	65				
					3.7	0.049	75				

~ 各試料の伸長粘度~

~ 各試料の伸長粘度~ 106 PP-C $\dot{\mathcal{E}}$ =0.082 10⁵ =0.317 =0.843 104 3 * Е 10³ [Pa_s] PP-D 10⁵ 104 3 * 10³ 10² 10-1 **10**¹ 10-0 10 Time[s]

~ 各試料の伸長粘度~

実験結果

分子量分布による伸長粘度への影響

分子量による伸長粘度への影響

ドローレゾナンスの発生限界ドラフト比 PP-A PP-B < PP-E < PP-D = PP-C

まとめ

分子量が大きいほどドローレゾナンスを 安定化させるという傾向は見られない

分子量分布が広いほど安定化した

粘度曲線とドローレゾナンスの波長には特に関係性は見られない

粘度が一定値になるまでの時間が早いものほどドローレゾナンスの 発生限界ドラフト比が小さい(生じにくい)

シミュレーション

溶融紡糸の支配方程式・構成方程式

