シクロオレフィンポリマー発泡体の気泡の微細化に関する研究

Study on formation of fine bubbles in cyclo olefin polymer

(山形大工) (学) 滝口修、(正) 杉本昌隆、(正) 谷口貴志、(正) 小山清人

We investigated formations of fine bubbles in a cyclo olefin polymer melt by using the microcellar foam technology. Experiments to make foams were performed at 15MPa and temperature 100, 120, and 140°C. It was found that bubble size becomes smaller as the foaming temperature is lower. In foams produced at 100°C, average size of bubbles was nearly 1 μ m.

keywords : cyclo olefin polymer, foam, bubbles, CO2

1. 緒言

シクロオレフィンポリマー(COP)は光学特性 に優れており¹⁾、ガラスの代替材料としてレン ズなどの光学部品に多く使用されている。また、 電気特性、成形性も良いことから電気・電子、 医療の分野でも注目されている。

COP はそのままでも十分に優れた材料である が、我々はナノコンポジット化することでさら に物性が向上し、使用用途を拡大できるのでは ないかと考えた。さらに、添加する物質が可視 光線の波長以下であれば光学特性(透明性)を失 わない。

そこで本研究では、COP にナノオーダーの気 泡を分散させた発泡体(ナノ発泡体)を作製する ことを目的とした。現在、発泡の研究では超臨 界発泡法により得られるマイクロセルラーフォ ームについて盛んに行われており、本学会にお いても気泡の微細化、メカニズムについて多く 発表されている。この手法でナノ発泡体を作製 することにより光学特性を保持し、電気特性の 向上、断熱性、軽量化などが期待できる。

COP 発泡体の気泡の微細化に関する報告が少ないため、今回は COP の T_g付近とそれ以下の 温度での基礎的な発泡実験を行う。

- 2. 実験
- ・試料
 - ^{武科} COP:ZEONEX[®]E48R (日本ゼオン株式会社製、T_g=139 、比重 1.01) ガス:二酸化炭素

Osamu TAKIGUCHI*, Masataka SUGIMOTO, Takashi TANIGUCHI, Kiyohito KOYAMA Department of Polymer Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Japan, Tel:0238-26-3058, Fax:0238-26-3411 E-mail: takiguti@ckpss.yz.yamagata-u.ac.jp

・実験装置

実験装置はオートクレーブ(耐圧硝子工業株式 会社製)を用い、バッチ式で実験を行った。Fig.1 に実験装置の概要を示す。

Fig.1 Schematic diagram of apparatus

・発泡体の作製

ホットプレスを用いて厚さ 0.5mm、直径 20mm のディスク状の COP 試料を作製した。作製した 試料をオートクレーブに入れ、15MPa の圧力を 印加した。発泡の温度依存性を調べるために、100、 120、140 の3 つの温度でそれぞれ二酸化炭素 雰囲気下で4時間含浸させ、急減圧により容器 内で発泡させた。

3. 発泡体の評価

発泡した試料の比重を測定した。そして、試料を液体窒素下で冷却・切断し、破断面を Scanning Electron Microscope(SEM)で観察した。 撮影した写真を画像解析して平均気泡径を求めた。空隙率 V[%]は比重を用いて次式:

$$V = \frac{R - R_f}{R} \times 100 \tag{1}$$

により求めた。ここで、R は発泡前の試料の比

重、*R_f* は発泡後の試料の比重である。セル密度 *N*₀の見積りには、次式:

$$N_0 = 6(\rho/\rho_f - 1) \, \pi D^3 \qquad (2)^{2}$$

を用いた。ここで、ρは発泡前の試料の密度、ρ_f は発泡後の試料の密度である。密度を比重に置 き換えて求めた。

4. 結果および考察

Fig.2 に各発泡温度で作製した発泡体の SEM 写真を示す。また、Table.1 に各発泡温度での比 重、平均気泡径、空隙率、セル密度を示す。発 泡温度が低いほど気泡径が小さくなっているこ とが分かる。

このことについて、以下のように考察した。100、 120 は COP の T_gよりも低いが十分に発泡して いるのは、二酸化炭素が溶解したときに起こる 可塑化効果により T_gが低下したためである。そ して、100 の平均気泡径の方がより小さくなっ ているのは、減圧中に二酸化炭素が気泡になり 可塑化効果が弱くなっていく段階で、発泡温度 よりも T_gの方が低い時間が 120 よりも短いた めにすぐに気泡の成長が止まるからではないか と考えられる。さらに、すぐに気泡の成長が止 まるため気泡の合一があまり起こらず、セル密 度が高くなったと思われる。しかし、気泡の成 長が止まるために空隙率は低くなった。

また、Fig.2(c)の気泡の一つ一つの周りに多角 形状の模様(凹凸)が見られる。これについて、 100 の発泡体は塑性に近い温度域で発泡したた め、内部に残留応力が残り、液体窒素下での切 断時に応力が集中している部分から亀裂が進み このような模様になったのではないかと推測し ている。

5. 結言

本研究ではマイクロセルラーフォームの手法 を用いて COP の T_g付近からそれ以下の温度で の発泡体の作製・評価を行った。

今回は、発泡の傾向を知るために、温度・圧 力を大まかに振ったが、今後はより低温・高圧 下での現象を観察すると共に添加剤によるセル 密度の増加を行っていきたい。

参考文献

工, 6(12), 863(1994)

 1)小松正明,小原禎二,南幸治:成形加工 16(10), 649(2004)
2)新保實, Daniel F. Baldwin, Nam P. Suh:成形加

(a)140°C 15MPa

(b) 120°C 15MPa

(c) 100°C 15MPa

Fig.2 SEM photographs of foams produced at (a)140, (b)120, (c)100°C.

Table.1 Specific gravity, average sizes of bubbles, densities of void, and densities of cell for foams produced at 100, 120, and 140°C.

発泡温度	100	120	140
比重	0.97	0.76	0.23
平均気泡径[μm]	1.04	7.10	19.18
空隙率[%]	3.95	25.22	77.36
セル密度[個/cm ³]	7.07×10^{10}	1.80×10^{9}	9.25×10^8