ブロック PP のエラストマー成分が気泡径に及ぼす影響

Effect of the elastomer component in PP on the cell size.

(山形大学) (学)坂本彩子、(正)杉本昌隆、(正)谷口貴志、(正)小山清人 (日本ポリプロ) (賛)本田孝一

We studied the effect of elastomar on the cell size for PP. Supercritical carbon dioxide was used as foaming agent. As a result, generation of cells was observed in an elastomer part at comparatively low temperature. There was no meaningful difference in solubility of CO₂ between PP-H and PP-L. The void size depended on elastomer domain size. We found that elastomar domain size and number affected void density and size. A relationship between the domain size and the molecular wight is the open question at present.

Keywords: Carbon Dioxide, elastomer, polypropylene

1. 緒言

自動車分野ではプラスチックが多く使用され ているが、その中でも PP の使用量は約60%とい われており、耐衝撃性を向上させる為、ゴム成分 (エラストマー)を含有したいわゆるブロック PP が用いられる。近年、燃費向上、排ガス規制 といった環境負荷低減、コストダウンという点か ら軽量化が求められている。軽量化の手段の一つ として、気泡を導入する「発泡」という方法があ り、この方法は軽量化だけではなく、断熱性や衝 撃吸収性向上といった機能も付与することがで きる。自動車分野では特に、軽量化という面が重 要視されているので、発泡倍率の向上を目指すこ ととなるが、それには気泡構造の制御が必要とな る。しかし、ブロック PP において、気泡の微細 化と多孔化の為の詳しいパラメータは解明され ていない。

そこで本研究では、ブロック PP のエラストマー成分が気泡に及ぼす影響を検討した。

2. 実験

<u>2.1 サンプル</u>

試料は table.1 に示すように、ホモ PP とエラストマーのブロック PP を用いた。ブロック PP はエラストマー重量比が近く、エラストマーの MFR (分子量)を変えたものを使用した。ホモ PP を

Ayako SAKAMOTO*, Masataka SUGIMOTO, Takashi TANIGUCHI and Kiyohito KOYAMA Dept of Polymer Science and Engineering Yamagata University, Yonezawa 992-8510, JAPAN TEL:0238-26-3058, FAX:0238-26-3411 E-mail:sakamoto@ckpss.yz.yamagata-u.ac.jp

PP-0 とし、ブロック PP のエラストマー部の分子量が大きいものを PP-H、分子量が小さいものを PP-L、分子量が小さくエラストマーが 50wt% のものを PP-50L とした。 PP-50L は含浸量測定だけに用いた。

Table.1 Characteristics of polymers

	MFR (g/10min)	Elastmer (wt%)	Elastmer MFR (g/10min)	Elastomer Mw
PP-0	30			
PP-H	30	13	$10^{-4} \sim 10^{-3}$	high
PP-L	20	14	$10^{-2} \sim 10^{-1}$	low
PP-50L	8	50	$10^{-2} \sim 10^{-1}$	low

2.2 実験方法

発泡剤として超臨界二酸化炭素(scCO₂)を用い、 発泡温度 130 、圧力 15MPaで発泡成形を行った。 セル構造は液体窒素中で破断したサンプルの破 断面を走査型電子顕微鏡(SEM)で観察した。

 CO_2 含浸量は磁気浮遊天秤を用い、測定した。 エラストマーの分散状態の観察をする為に、溶 媒としてキシレンを用いてエラストマードメイ ンを溶かし、SEM で内部観察を行った。

3. 結果・考察

3.1 発泡実験結果

気泡観察をした結果を Fig.1、2 に示す。 PP-H の平均気泡径は 0.4μm であったが、PP-L では 1.3μm となっていた。更に、PP-H は気泡径 がそろっており、気泡数も多いのに対し、PP-L では気泡径もそろっておらず、気泡数も少なかっ た。これは、120、140 でも同じ傾向であった。

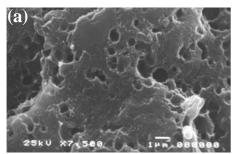


Fig.1 SEM micro graphs of foamed structure.
(a)PP-H (130 、15MPa)

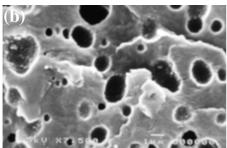


Fig.2 SEM micro graphs of foamed structure. (b)PP-L (130 、15MPa)

3.2 含浸量測定

PP-HとPP-Lの発泡状況の違いは CO_2 含浸量によるものと考え、含浸量測定を行った。120~~~140~~~15MPaでの測定結果をFig.3に示す。

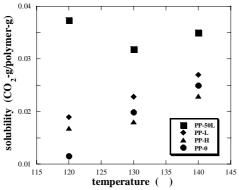


Fig.3 Solubility of CO₂ into several solid polymer

エラストマー含有量が多くなるにつれ含浸量が増加していることが確認できる。PPよりエラストマー部にCO₂が含浸しやすいことがわかるが、PP-HとPP-Lでは含浸量に有意な差は確認できない。

しかし、この温度領域では PP 中の結晶部は十分に溶融していなかったと考えられる。その為、温度が上昇するにつれ結晶部が減少し、含浸量が増えていったのではないかと考えた。

3.3 エッチング

含浸量測定で有意な差が確認できなかった為、 エラストマーの分散状況を確認した。この結果を Fig.4、5 に示す。

PP-H はドメインが小さく、サイズもそろって いたが、PP-L ではドメインのサイズは比較的大き

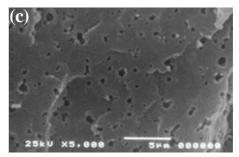


Fig.4 SEM micro graphs of etching. (c)PP-H

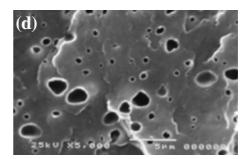


Fig.5 SEM micro graphs of etching. (d)PP-L

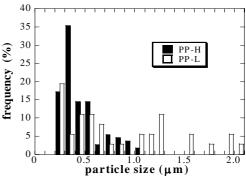


Fig.6 particle size of etching

く、粒径サイズの分布も大きい。エラストマード メインの粒径分布を Fig.6 に示す。

PP-H の方が PP-L よりサイズが均一で、小さいことが確認できた。

3.4 考察

Fig.1、2と4、5より、気泡の径、数とエラストマードメインの径、数は同じ傾向であることが窺える。これは、発泡剤であるCO2が非晶性高分子であるエラストマーに含浸しやすい為であると考えられる。Fig.3より、130 という発泡温度ではPPが溶融していない状態であると思われるため、CO2が含浸しにくかったとも考えられる。故に、今回の温度条件では、エラストマードメインの状態が気泡状態に影響を与えるといえる。

<u>4. まとめ</u>

130 では、ブロック PP の気泡径は、エラストマーのサイズ、数に依存した。